工作學(xué)習(xí)中一定要善始善終,只有總結(jié)才標(biāo)志工作階段性完成或者徹底的終止。通過總結(jié)對(duì)工作學(xué)習(xí)進(jìn)行回顧和分析,從中找出經(jīng)驗(yàn)和教訓(xùn),引出規(guī)律性認(rèn)識(shí),以指導(dǎo)今后工作和實(shí)踐活動(dòng)。那關(guān)于總結(jié)格式是怎樣的呢?而個(gè)人總結(jié)又該怎么寫呢?下面是我給大家整理的總結(jié)范文,歡迎大家閱讀分享借鑒,希望對(duì)大家能夠有所幫助。
初一數(shù)學(xué)幾何圖形知識(shí)點(diǎn)總結(jié)實(shí)用篇一
單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
a)由數(shù)與字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)一個(gè)數(shù)或字母也是單項(xiàng)式。
b)單項(xiàng)式的系數(shù)是這個(gè)單項(xiàng)式的數(shù)字因數(shù),作為單項(xiàng)式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號(hào),如果一個(gè)單項(xiàng)式只是字母的積,并非沒有系數(shù),系數(shù)為1或-1。
c)一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)(注意:常數(shù)項(xiàng)的單項(xiàng)式次數(shù)為0)
b)括號(hào)前面是“-”號(hào),去括號(hào)時(shí),括號(hào)內(nèi)各項(xiàng)要變號(hào),一個(gè)數(shù)與多項(xiàng)式相乘時(shí),這個(gè)數(shù)與括號(hào)內(nèi)各項(xiàng)都要相乘。
二、同底數(shù)冪的乘法
b)指數(shù)是1時(shí),不要誤以為沒有指數(shù);
d)當(dāng)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),法則可推廣為
(其中m、n、p均為整數(shù));
e)公式還可以逆用:
(m、n均為整數(shù))
a)冪的乘方法則:
(m,n都是整數(shù)數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。
b)
(m,n都為整數(shù))。
d)底數(shù)有時(shí)形式不同,但可以化成相同。
e)要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
f)積的乘方法則:積的乘方,等于把積每一個(gè)因式分別乘方,再把所得的冪相乘,即(ab)n=anbn(n為正整數(shù))。
g)冪的乘方與積乘方法則均可逆向運(yùn)用。
一、目標(biāo)與要求
1.認(rèn)識(shí)三角形,了解三角形的意義,認(rèn)識(shí)三角形的邊、內(nèi)角、頂點(diǎn),能用符號(hào)語言表示三角形。
2.經(jīng)歷度量三角形邊長(zhǎng)的實(shí)踐活動(dòng)中,理解三角形三邊不等的關(guān)系。
3.懂得判斷三條線段可否構(gòu)成一個(gè)三角形的方法,并能運(yùn)用它解決有關(guān)的問題。
4.三角形的內(nèi)角和定理,能用平行線的性質(zhì)推出這一定理。
5.能應(yīng)用三角形內(nèi)角和定理解決一些簡(jiǎn)單的實(shí)際問題。
二、重點(diǎn)
三角形內(nèi)角和定理;
對(duì)三角形有關(guān)概念的了解,能用符號(hào)語言表示三條形。
三、難點(diǎn)
三角形內(nèi)角和定理的推理的過程;
在具體的圖形中不重復(fù),且不遺漏地識(shí)別所有三角形;
用三角形三邊不等關(guān)系判定三條線段可否組成三角形。
四、知識(shí)框架
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三角形的分類
3.三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4.高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
5.中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。
6.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
7.高線、中線、角平分線的意義和做法
8.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
9.三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°
推論1直角三角形的兩個(gè)銳角互余;
推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和;
推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;
三角形的內(nèi)角和是外角和的一半。
10.三角形的外角:三角形的一條邊與另一條邊延長(zhǎng)線的夾角,叫做三角形的外角。
11.三角形外角的性質(zhì)
(2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;
(3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角;
(4)三角形的外角和是360°。
12.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
13.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
14.多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。
15.多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
17.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
19.公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
20.多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
21.多邊形對(duì)角線的條數(shù):
(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)三角形。
(2)n邊形共有n(n-3)/2條對(duì)角線。
六、經(jīng)典例題
(a)全部正確(b)僅①正確(c)僅①、②正確(d)僅①、③正確
②如圖乙,如果ab∥cd,那么∠b=∠d;
③如圖丙,如果∠acd=∠cab,那么ad∥bc;
(a)1(b)2(c)3(d)4
軸不重合,與△abc的兩邊相交的直線,使截得的三角形與△abc相似,并且面積是△aoc面積的.分別在下面的兩個(gè)坐標(biāo)中系畫出設(shè)計(jì)圖形,并寫出截得的三角形三個(gè)頂點(diǎn)的坐標(biāo)。
下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)之三角形的相關(guān)內(nèi)容就為大家介紹到這兒了,希望能幫助到大家。
五、同底數(shù)冪的除法
a)同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即
(a≠0).
b)在應(yīng)用時(shí)需要注意以下幾點(diǎn):
1)法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a0。
2)任何不等于0的數(shù)的0次冪等于1,即a0=1(a≠0),如100=1,(-2.50=1),則00無意義。
,d)運(yùn)算要注意運(yùn)算順序。
六、整式的乘法
單項(xiàng)式相乘,它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。
b)相同字母相乘,運(yùn)用同底數(shù)冪的乘法法則;
c)只在一個(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個(gè)因式;
d)單項(xiàng)式乘法法則對(duì)于三個(gè)以上的單項(xiàng)式相乘同樣適用;
e)單項(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個(gè)單項(xiàng)式。
單項(xiàng)式乘以多項(xiàng)式,是通過乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
單項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
a)單項(xiàng)式與多項(xiàng)式相乘,積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;
b)運(yùn)算時(shí)要注意積的符號(hào),多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào);
c)在混合運(yùn)算時(shí),要注意運(yùn)算順序。
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加。
多項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):
b)多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);
c)對(duì)含有同一個(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個(gè)因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個(gè)因式中常數(shù)項(xiàng)的積。對(duì)于一次項(xiàng)系數(shù)不為1的兩個(gè)一次二項(xiàng)式(mx+a)和(nx+b)相乘可以得到。
七.平方差公式
兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即。其結(jié)構(gòu)特征是:
b)公式右邊是兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。
八、完全平方公式
a)公式左邊是二項(xiàng)式的完全平方;
b)公式右邊共有三項(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。
c)在運(yùn)用完全平方公式時(shí),要注意公式右邊中間項(xiàng)的符號(hào),以及避免出現(xiàn)這樣的錯(cuò)誤。
九、整式的除法
多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號(hào)。
初一數(shù)學(xué)幾何圖形知識(shí)點(diǎn)總結(jié)實(shí)用篇二
角的種類:角的大小與邊的長(zhǎng)短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動(dòng)態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0,小于90的角叫做銳角。
直角:等于90的角叫做直角。
鈍角:大于90而小于180的角叫做鈍角。
平角:等于180的角叫做平角。
優(yōu)角:大于180小于360叫優(yōu)角。
劣角:大于0小于180叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360的角叫做周角。
負(fù)角:按照順時(shí)針方向旋轉(zhuǎn)而成的角叫做負(fù)角。
正角:逆時(shí)針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補(bǔ)角:兩角之和為90則兩角互為余角,兩角之和為180則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。
對(duì)頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長(zhǎng)線,這樣的兩個(gè)角叫做互為對(duì)頂角。兩條直線相交,構(gòu)成兩對(duì)對(duì)頂角。互為對(duì)頂角的兩個(gè)角相等。
還有許多種角的關(guān)系,如內(nèi)錯(cuò)角,同位角,同旁內(nèi)角(三線八角中,主要用來判斷平行)!
初一數(shù)學(xué)幾何圖形知識(shí)點(diǎn)總結(jié)實(shí)用篇三
1.同一平面內(nèi),兩直線不平行就相交。
為反向延長(zhǎng)線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對(duì)的兩個(gè)角叫做對(duì)頂角,特點(diǎn)是它們的兩條邊互為反向延長(zhǎng)線。性質(zhì)是對(duì)頂角相等。
兩條直線內(nèi)部,位于第三條直線兩側(cè)),同旁內(nèi)角u(在兩條直線內(nèi)部,位于第三條直線同側(cè))。9.平行公理:過直線外一點(diǎn)有且只有一條直線與已知直線平行。
1.兩直線平行,同位角相等。2.兩直線平行,內(nèi)錯(cuò)角相等。3.兩直線平行,同旁內(nèi)角互補(bǔ)。
三角形和多邊形
1.三角形內(nèi)角和為180°
2.構(gòu)成三角形滿足的條件:三角形兩邊之和大于第三邊。
判斷方法:在△abc中,a、b為兩短邊,c為長(zhǎng)邊,如果a+bc則能構(gòu)成三角形,否則(a+bc)不能構(gòu)成三角形(即三角形最短的兩邊之和大于最長(zhǎng)的邊)
是斜邊ab
上的高,則有acbccdab
a
cb1d【重點(diǎn)題目】p708題例直角三角形的三邊長(zhǎng)分別為3、4、5,則斜邊上的高為5.等高法:高相等,底之間具有一定關(guān)系(如成比例或相等)
【基礎(chǔ)知識(shí)】正多邊形:各邊相等,各角相等;正n邊形每個(gè)內(nèi)角的度數(shù)為【重點(diǎn)題目】p83、p84練習(xí)1,2,3;p843,4,5,6;p904、5題9.√鑲嵌:圍繞一個(gè)拼接點(diǎn),各圖形組成一個(gè)周角(不重疊,無空隙)。
0000m個(gè)內(nèi)角度數(shù)為的正多邊形圍繞一個(gè)拼接點(diǎn)組成一個(gè)周角,即混合鑲嵌。
平面直角坐標(biāo)系
▲建系原則:原點(diǎn)、正方向、橫縱軸名稱(即x、y)
點(diǎn)的平移規(guī)律(p51歸納)
例將p(2,3)向左平移3個(gè)單位,向上平移5個(gè)單位得到點(diǎn)q,則q點(diǎn)的坐標(biāo)為圖形的平移規(guī)律(p52歸納)
重點(diǎn)題目:p53練習(xí);p543、4題;p557題。2.對(duì)稱規(guī)律▲
關(guān)于x軸對(duì)稱,縱坐標(biāo)取相反數(shù)關(guān)于y軸對(duì)稱,橫坐標(biāo)取相反數(shù)
關(guān)于原點(diǎn)對(duì)稱,橫、縱坐標(biāo)同時(shí)取相反數(shù)
例:p點(diǎn)的坐標(biāo)為(5,7),則p點(diǎn)
組距軸為“頻數(shù)”
二元一次方程組和不等式、不等式組
1.解二元一次方程組,基本的思想是;2.二元一次方程(組):含兩個(gè)未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)都是1,像這樣的方程叫做二元一次方程。把具有相同未知數(shù)的兩個(gè)二元一次方程組合起來,就組成了二元一次方程組。(具體題目見本單元測(cè)試卷填空部分)
步驟:去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為一;其中去分母與系數(shù)化為一要特別小心,因?yàn)橐诓坏仁絻啥送瑫r(shí)乘或除以某一個(gè)數(shù),要考慮不等號(hào)的方向是否發(fā)生改變的問題。7.用不等式表示,p1282題,p127練習(xí)2;p123練習(xí)28.利用數(shù)軸或口訣解不等式組(課本上的例、習(xí)題)
數(shù)軸:p140歸納口訣(簡(jiǎn)單不等式):同大取大,同小取小,大(于)小小(于)大取中間,大(于)大小(于)小,解不見了。
4
在數(shù)軸上表示的解集解集x>a口訣大大取大;x>ax>bx<ax<bx<ax>b小大大小中間找;ba小小取?。粁>ax<b空集大大小小不見了。
初一數(shù)學(xué)幾何圖形知識(shí)點(diǎn)總結(jié)實(shí)用篇四
(1)相反數(shù)的概念:只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù).
題型簡(jiǎn)單總結(jié)以下三種:
①已知條件不化簡(jiǎn),所給代數(shù)式化簡(jiǎn);
②已知條件化簡(jiǎn),所給代數(shù)式不化簡(jiǎn);
③已知條件和所給代數(shù)式都要化簡(jiǎn).
②從實(shí)線和虛線想象幾何體看得見部分和看不見部分的輪廓線;
③熟記一些簡(jiǎn)單的幾何體的三視圖對(duì)復(fù)雜幾何體的想象會(huì)有幫助;
初一數(shù)學(xué)幾何圖形知識(shí)點(diǎn)總結(jié)實(shí)用篇五
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三角形的分類
3.三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4.高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
5.中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。
6.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
7.高線、中線、角平分線的意義和做法
8.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
9.三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°
推論1直角三角形的兩個(gè)銳角互余;
推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和;
推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;
三角形的內(nèi)角和是外角和的一半。
10.三角形的外角:三角形的一條邊與另一條邊延長(zhǎng)線的夾角,叫做三角形的外角。
11.三角形外角的性質(zhì)
(2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;
(3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角;
(4)三角形的外角和是360°。
12.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
13.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
14.多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。
15.多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
17.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
19.公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
20.多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
21.多邊形對(duì)角線的條數(shù):
(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)三角形。
(2)n邊形共有n(n-3)/2條對(duì)角線。
初一數(shù)學(xué)幾何圖形知識(shí)點(diǎn)總結(jié)實(shí)用篇六
前蘇聯(lián)數(shù)學(xué)教育家斯托利亞爾言:“數(shù)學(xué)教學(xué)也就是數(shù)學(xué)語言的教學(xué)”。數(shù)學(xué)語言精練、語句嚴(yán)謹(jǐn);所以只有做到對(duì)每個(gè)句子、每個(gè)概念、每個(gè)圖表都應(yīng)細(xì)致地閱讀分析,領(lǐng)會(huì)其內(nèi)容、含義。才能體會(huì)到其中的數(shù)學(xué)思想方法,并能正確依據(jù)數(shù)學(xué)原理分析它們之間的邏輯關(guān)系,達(dá)到對(duì)材料的真正理解,形成知識(shí)結(jié)構(gòu)。
(二)學(xué)好初中數(shù)學(xué)需要培養(yǎng)“想要聽、聽得懂、懂得聽”的習(xí)慣
要做到想要聽,就得明白學(xué)習(xí)數(shù)學(xué)的意義:在多年的數(shù)學(xué)學(xué)習(xí)中,數(shù)學(xué)真理的絕對(duì)性,數(shù)學(xué)結(jié)論的可靠性,數(shù)學(xué)演算的精確性,數(shù)學(xué)思維的嚴(yán)密性,點(diǎn)點(diǎn)滴滴地滲入到我們的思想,這些將在我們?nèi)蘸蟮娜松鷼v程中起著重要的作用。要達(dá)到聽得懂,就必須提前預(yù)習(xí),保持專注;要做到懂得聽就是明白聽課重點(diǎn)。
(三)學(xué)好初中數(shù)學(xué)需要養(yǎng)成良好的作業(yè)習(xí)慣
做作業(yè)前先要復(fù)習(xí)鞏固所學(xué)的概念、定理和性質(zhì),聯(lián)想老師所講過的經(jīng)典例題。做題時(shí)一要看題準(zhǔn)確,即文字、數(shù)學(xué)式子、數(shù)學(xué)符號(hào)等不多看、少看或漏看;二要分得清楚,即能分清題目的條件、結(jié)論。由題聯(lián)想到它考查的知識(shí)點(diǎn)。