總結(jié)的內(nèi)容應(yīng)該包括事情的起因、過(guò)程和結(jié)果等方面的描述。要寫一篇較為完美的總結(jié),首先需要明確總結(jié)的目的和主題。希望以下提供的總結(jié)范文能給大家提供一些寫作思路和方法。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇一
0既不是正數(shù),也不是負(fù)數(shù)。
(2)正數(shù)和負(fù)數(shù)表示相反意義的量。
(1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長(zhǎng)度。數(shù)軸是一條直線。
(2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。
(3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)。
(2)相反數(shù):符號(hào)不同、絕對(duì)值相等的兩個(gè)數(shù)互為相反數(shù)。
若a、b互為相反數(shù),則a+b=0;
相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。
(3)絕對(duì)值最小的數(shù)是0;絕對(duì)值是本身的數(shù)是非負(fù)數(shù)。
最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。
兩個(gè)正數(shù)比較:絕對(duì)值大的那個(gè)數(shù)大;
兩個(gè)負(fù)數(shù)比較:先算出它們的絕對(duì)值,絕對(duì)值大的反而小。
(1)符號(hào)相同的兩數(shù)相加:和的符號(hào)與兩個(gè)加數(shù)的符號(hào)一致,和的絕對(duì)值等于兩個(gè)加數(shù)絕對(duì)值之和.
(2)符號(hào)相反的兩數(shù)相加:當(dāng)兩個(gè)加數(shù)絕對(duì)值不等時(shí),和的符號(hào)與絕對(duì)值較大的加數(shù)的符號(hào)相同,和的絕對(duì)值等于加數(shù)中較大的絕對(duì)值減去較小的絕對(duì)值;當(dāng)兩個(gè)加數(shù)絕對(duì)值相等時(shí),兩個(gè)加數(shù)互為相反數(shù),和為零.
(3)一個(gè)數(shù)同零相加,仍得這個(gè)數(shù).
加法的交換律:a+b=b+a
加法的結(jié)合律:(a+b)+c=a+(b+c)
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
例如:14+12+(-25)+(-17)可以寫成省略括號(hào)的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”
兩個(gè)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘;任何數(shù)與0相乘都得0。
第一步:確定積的符號(hào) 第二步:絕對(duì)值相乘
當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正。幾個(gè)有理數(shù)相乘,有一個(gè)因數(shù)為零,積就為零。
乘積為1的兩個(gè)數(shù)互為倒數(shù),0沒(méi)有倒數(shù)。
正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個(gè)數(shù)符號(hào)一定相同)
倒數(shù)是本身的只有1和-1。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇二
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;。
1平角=2直角=180°;。
1直角=90°;。
1度=60分=3600秒(即:1°=60′=3600″);。
1分=60秒(即:1′=60″).
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說(shuō)明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒(méi)有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;。
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);。
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。
常見(jiàn)考法。
(1)考查與時(shí)鐘有關(guān)的問(wèn)題;(2)角的計(jì)算與度量。
誤區(qū)提醒。
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。
【典型例題】(20xx云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉(zhuǎn)角的度數(shù)是()。
【答案】3時(shí)到6時(shí),時(shí)針旋轉(zhuǎn)的是一個(gè)周角的1/4,故是90度,本題選c.
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇三
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說(shuō)明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒(méi)有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。
常見(jiàn)考法
(1)考查與時(shí)鐘有關(guān)的問(wèn)題;(2)角的計(jì)算與度量。
誤區(qū)提醒
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。
【典型例題】(20xx云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉(zhuǎn)角的度數(shù)是( )
【答案】3時(shí)到6時(shí),時(shí)針旋轉(zhuǎn)的是一個(gè)周角的1/4,故是90度 ,本題選c.
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇四
3、一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
有理數(shù)加法的運(yùn)算律
1、加法的交換律:a+b=b+a;
2、加法的結(jié)合律:(a+b)+c=a+(b+c)
有理數(shù)減法法則
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)
有理數(shù)乘法法則
1、兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
2、任何數(shù)同零相乘都得零;
3、幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇五
1、定義:頂點(diǎn)在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半。
3、推論:1)在同圓或等圓中,相等的圓周角所對(duì)的弧相等。
2)直徑(半圓)所對(duì)的圓周角是直角;900的圓周角所對(duì)的弦為直徑
4、圓內(nèi)接四邊形的性質(zhì)定理:圓內(nèi)接四邊形的對(duì)角互補(bǔ)。(任意一個(gè)外角等于它的內(nèi)對(duì)角)
補(bǔ)充:1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時(shí),所夾角等于它所對(duì)的兩條弧度數(shù)差的一半。2)在圓內(nèi)相交時(shí),所夾的角等于它所夾兩條弧度數(shù)和的一半。
3、同弧所對(duì)的(在弧的同側(cè))圓內(nèi)部角其次是圓周角,最小的是圓外角。
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
1.大于0的數(shù)叫做正數(shù)。
2.在正數(shù)前面加上負(fù)號(hào)“-”的數(shù)叫做負(fù)數(shù)。
3.整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
4.人們通常用一條直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸。
5.在直線上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn)。
6.一般的,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值。
7.由絕對(duì)值的定義可知:
一個(gè)正數(shù)的絕對(duì)值是它本身;
一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);
0的絕對(duì)值是0。
8.正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。
9.兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
10.有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
(2)絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的負(fù)號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)的兩個(gè)數(shù)相加得0。
(3)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
11.有理數(shù)的加法中,兩個(gè)數(shù)相加,交換交換加數(shù)的位置,和不變。
12.有理數(shù)的加法中,三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
13.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
14.有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值向乘。任何數(shù)同0相乘,都得0。
15.有理數(shù)中仍然有:乘積是1的兩個(gè)數(shù)互為倒數(shù)。
16.一般的,有理數(shù)乘法中,兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。
17.三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。
18.一般地,一個(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。
19.有理數(shù)除法法則:除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。
20.兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。0除以任何一個(gè)不等于0的數(shù),都得0。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇六
相似比:相似多邊形對(duì)應(yīng)邊的比值。
2、相似三角形。
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;
如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么兩個(gè)三角形相似。
3相似三角形的周長(zhǎng)和面積。
相似三角形(多邊形)的周長(zhǎng)的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似。
位似圖形:兩個(gè)多邊形相似,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇七
1、直接法:
直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍。
2、分離參數(shù)法:
先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問(wèn)題加以解決。
3、數(shù)形結(jié)合法:
先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇八
則有以下五種關(guān)系:
1、dr+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。
2、d=r+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。
3、d=r—r兩圓內(nèi)切;兩圓的圓心距離之和等于兩圓的半徑之差。
4、d。
5、d。
1、無(wú)公共點(diǎn),一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含。
2、有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切。
3、有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇九
【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。
注意對(duì)向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的??杀容^大小。
【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。
【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。
【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來(lái)幫助理解。
【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。
【內(nèi)容解讀】向量與三角函數(shù)的綜合問(wèn)題是高考經(jīng)常出現(xiàn)的問(wèn)題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的覆蓋面的要求。
【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問(wèn)題,屬中檔偏易題。
【內(nèi)容解讀】平面向量與函數(shù)交匯的問(wèn)題,主要是向量與二次函數(shù)結(jié)合的問(wèn)題為主,要注意自變量的取值范圍。
【命題規(guī)律】命題多以解答題為主,屬中檔題。
【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問(wèn)題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問(wèn)題得到解決.
【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。
戴氏航天學(xué)校老師總結(jié)加法與減法的代數(shù)運(yùn)算:
(1)若a=(x1,y1),b=(x2,y2)則ab=(x1+x2,y1+y2).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
兩個(gè)向量共線的充要條件:
(1)向量b與非零向量共線的充要條件是有且僅有一個(gè)實(shí)數(shù),使得b=.
(2)若=(),b=()則‖b.
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇十
經(jīng)過(guò)一點(diǎn)可以作無(wú)數(shù)個(gè)圓。
經(jīng)過(guò)兩點(diǎn)也可以作無(wú)數(shù)個(gè)圓,且圓心都在連結(jié)這兩點(diǎn)的線段的垂直平分線上。
定理:過(guò)不共線的三個(gè)點(diǎn),可以作且只可以作一個(gè)圓。
推論:三角形的三邊垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)就是三角形的外心。
三角形的三條高線的交點(diǎn)叫三角形的垂心。
1.2垂徑定理。
圓是中心對(duì)稱圖形;圓心是它的對(duì)稱中心。
圓是周對(duì)稱圖形,任一條通過(guò)圓心的直線都是它的對(duì)稱軸。
定理:垂直于弦的直徑平分這條弦,并且評(píng)分弦所對(duì)的兩條弧。
推論1:平分弦(不是直徑)的直徑垂直于弦并且平分弦所對(duì)的兩條弧。
推論2:弦的垂直平分弦經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。
推論3:平分弦所對(duì)的一條弧的直徑,垂直評(píng)分弦,并且平分弦所對(duì)的另一條弧。
1.3弧、弦和弦心距。
定理:在同圓或等圓中,相等的弧所對(duì)的弦相等,所對(duì)的弦的弦心距相等。
二圓與直線的位置關(guān)系。
2.1圓與直線的位置關(guān)系。
如果一條直線和一個(gè)圓沒(méi)有公共點(diǎn),我們就說(shuō)這條直線和這個(gè)圓相離。
定理:經(jīng)過(guò)圓的半徑外端點(diǎn),并且垂直于這條半徑的直線是這個(gè)圓的切線。
定理:圓的切線垂直經(jīng)過(guò)切點(diǎn)的半徑。
推論1:經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)。
推論2:經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心。
直線和圓的位置關(guān)系只能由相離、相切和相交三種。
2.2三角形的內(nèi)切圓。
定理:三角形的三個(gè)內(nèi)角平分線交于一點(diǎn),這點(diǎn)是三角形的內(nèi)心。
2.3切線長(zhǎng)定理。
2.4圓的外切四邊形。
定理:圓的外切四邊形的兩組對(duì)邊的和相等。
定理:如果四邊形兩組對(duì)邊的和相等,那么它必有內(nèi)切圓。
三圓與圓的位置關(guān)系。
3.1兩圓的位置關(guān)系。
經(jīng)過(guò)兩個(gè)圓的圓心的直線,叫做兩圓的連心線,兩個(gè)圓心之間的距離叫做圓心距。
定理:兩圓的連心線是兩圓的對(duì)稱軸,并且兩圓相切時(shí),它們切點(diǎn)在連心線上。
(1)兩圓外離dr+r。
(2)兩圓外切d=r+r。
(3)兩圓相交r-rdr)。
(4)兩圓內(nèi)切d=r-r(rr)。
(5)兩圓內(nèi)含dr)。
特殊情況,兩圓是同心圓d=0。
3.2兩圓的公切線。
定理:兩圓的兩條外公切線的長(zhǎng)相等;兩圓的兩條內(nèi)公切線的長(zhǎng)也相等。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇十一
任何正整數(shù)都是0的約數(shù)。
4的正約數(shù)有:1、2、4。
6的正約數(shù)有:1、2、3、6。
10的正約數(shù)有:1、2、5、10。
12的正約數(shù)有:1、2、3、4、6、12。
15的正約數(shù)有:1、3、5、15。
18的正約數(shù)有:1、2、3、6、9、18。
20的正約數(shù)有:1、2、4、5、10、20。
注意:一個(gè)數(shù)的約數(shù)必然包括1及其本身。
2、約數(shù)的個(gè)數(shù)怎么求。
要用到約數(shù)個(gè)數(shù)定理。
需要指出來(lái)的是,a1,a2,a3……都是a的質(zhì)因數(shù)。r1,r2,r3……是a1,a2,a3……的指數(shù)。
比如,360=2^3_3^2_5(^是次方的意思)。
所以個(gè)數(shù)是(3+1)_(2+1)_(1+1)=24個(gè)。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇十二
三忌“好高騖遠(yuǎn),忽視雙基”
很多同學(xué)都知道好高務(wù)遠(yuǎn)就是眼高手低、不自量力的代名詞,但卻不知道什么是好高騖遠(yuǎn)。
有的同學(xué)由于自己覺(jué)得成績(jī)很好,所以,總認(rèn)為基礎(chǔ)的東西,太簡(jiǎn)單,研究雙基是浪費(fèi)時(shí)間;有的同學(xué)對(duì)自己的定位較高,認(rèn)為自己研究的應(yīng)該是那些高于其它同學(xué)的,別人覺(jué)得有困難的東西;有的同學(xué)總是嫌老師講得太簡(jiǎn)單或者太慢,甚至有的同學(xué)成績(jī)不怎么樣,也瞧不起基礎(chǔ)的東西。其實(shí),這些都是好高騖遠(yuǎn)。
最深刻的道理,往往存在于最簡(jiǎn)單的事實(shí)之中。一切高樓大廈都是平地而起的,一切高深的理論,都是由基礎(chǔ)理論總結(jié)出來(lái)的。同學(xué)們可以仔細(xì)地分析老師講的課,無(wú)論是多難的題目,最后總是深入淺出,歸結(jié)到課本上的知識(shí)點(diǎn),無(wú)論是多簡(jiǎn)單的題目,總能指出其中所蘊(yùn)藏的科學(xué)道理,而大多數(shù)同學(xué),只聽(tīng)到老師講的是題目,常常認(rèn)為此題已懂,不需要再聽(tīng),而忽略了老師闡述“來(lái)自基礎(chǔ),回歸基礎(chǔ)”的道理的關(guān)鍵地方。所以大家一定要重視雙基,千萬(wàn)別好高務(wù)遠(yuǎn)。
四忌“敷衍了事,得過(guò)且過(guò)”
以下是對(duì)某校屆高三300名同學(xué)關(guān)于作業(yè)問(wèn)題的兩項(xiàng)調(diào)查:(數(shù)值為人數(shù)比例:做到的/總?cè)藬?shù))。
你做作業(yè)是為了什么?
檢測(cè)自己究竟學(xué)會(huì)了沒(méi)有占91/30.33%。
出處 KAoYANMiJI.CoM
因?yàn)槔蠋熞獧z查占143/47.67%。
怕被家長(zhǎng)、老師批評(píng)的占38/12.67%。
說(shuō)不清什么原因占28/9.33%。
你的作業(yè)是怎樣完成的?
復(fù)習(xí),再聯(lián)系課上內(nèi)容獨(dú)立完成占55/18.33%。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇十三
(2)線面垂直的判定定理1:如果一條直線與平面內(nèi)的兩條相交直線垂直,則這條直線與這個(gè)平面垂直。
(3)線面垂直的判定定理2:如果在兩條平行直線中有一條垂直于平面,那么另一條也垂直于這個(gè)平面。
(4)面面垂直的性質(zhì):如果兩個(gè)平面互相垂直那么在一個(gè)平面內(nèi)垂直于它們交線的直線垂直于另一個(gè)平面。
(5)若一條直線垂直于兩平行平面中的一個(gè)平面,則這條直線必垂直于另一個(gè)平面。
判定兩個(gè)平面垂直的方法:(1)利用定義。
(2)判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,則這兩個(gè)平面互相垂直。
夾在兩個(gè)平行平面之間的平行線段相等。
經(jīng)過(guò)平面外一點(diǎn)有且僅有一個(gè)平面與已知平面平行。
兩條直線被三個(gè)平行平面所截,截得的對(duì)應(yīng)線段成比例。
將本文的word文檔下載到電腦,方便收藏和打印。
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇十四
三忌“好高騖遠(yuǎn),忽視雙基”
很多同學(xué)都知道好高務(wù)遠(yuǎn)就是眼高手低、不自量力的代名詞,但卻不知道什么是好高騖遠(yuǎn)。
有的同學(xué)由于自己覺(jué)得成績(jī)很好,所以,總認(rèn)為基礎(chǔ)的東西,太簡(jiǎn)單,研究雙基是浪費(fèi)時(shí)間;有的同學(xué)對(duì)自己的定位較高,認(rèn)為自己研究的應(yīng)該是那些高于其它同學(xué)的,別人覺(jué)得有困難的東西;有的同學(xué)總是嫌老師講得太簡(jiǎn)單或者太慢,甚至有的同學(xué)成績(jī)不怎么樣,也瞧不起基礎(chǔ)的東西。其實(shí),這些都是好高騖遠(yuǎn)。
最深刻的道理,往往存在于最簡(jiǎn)單的事實(shí)之中。一切高樓大廈都是平地而起的,一切高深的理論,都是由基礎(chǔ)理論總結(jié)出來(lái)的。同學(xué)們可以仔細(xì)地分析老師講的課,無(wú)論是多難的題目,最后總是深入淺出,歸結(jié)到課本上的知識(shí)點(diǎn),無(wú)論是多簡(jiǎn)單的題目,總能指出其中所蘊(yùn)藏的科學(xué)道理,而大多數(shù)同學(xué),只聽(tīng)到老師講的是題目,常常認(rèn)為此題已懂,不需要再聽(tīng),而忽略了老師闡述“來(lái)自基礎(chǔ),回歸基礎(chǔ)”的道理的關(guān)鍵地方。所以大家一定要重視雙基,千萬(wàn)別好高務(wù)遠(yuǎn)。
四忌“敷衍了事,得過(guò)且過(guò)”
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與思考篇十五
1、課前預(yù)習(xí):首先上課前要做預(yù)習(xí),課前預(yù)習(xí)能提前了解將要學(xué)習(xí)的知識(shí)。
2、記筆記:指的是課堂筆記,每節(jié)課時(shí)間有限,老師一般講的都是精華部分。
3、課后復(fù)習(xí):通預(yù)習(xí)一樣,也是行之有效的方法。
4、涉獵課外習(xí)題:多涉獵一些課外習(xí)題,學(xué)習(xí)它們的解題思路和方法。
5、學(xué)會(huì)歸類總結(jié):學(xué)習(xí)數(shù)學(xué)記得東西很多,如果單純的記憶每個(gè)公式,不但增加記憶量而且容易忘。
6、建立糾錯(cuò)本:把經(jīng)常出錯(cuò)的.題目集中在一起。
7、寫考試總結(jié):考試總結(jié)可以幫助找出學(xué)習(xí)之中不足之處,以及知識(shí)的薄弱環(huán)節(jié)。
8、培養(yǎng)學(xué)習(xí)興趣:興趣是最好的老師,只有有了興趣才會(huì)自主自發(fā)的進(jìn)行學(xué)習(xí),學(xué)習(xí)效率才會(huì)提高。