旅游是一種豐富人生的方式,每一次旅行都帶給我們全新的體驗。結合實際情況,我們可以借鑒一些優(yōu)秀的總結經驗。總結范文中的思考和建議,可以為我們制定未來的學習和工作計劃提供一些參考。
教育工作者的二次根式教學設計篇一
重點和難點。
過程設計。
計算:
我們再看下面的問題:
簡,得到。
從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便.
答:
1.被開方數(shù)的因數(shù)是整數(shù)或整式;
2.被開方數(shù)中不含能開得盡方的因數(shù)或因式.
滿足上面兩個條件的二次根式叫做最簡二次根式.
(l)不是最簡二次根式.因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式.
整數(shù).
(3)是最簡二次根式.因為被開方數(shù)的因式x2+y2開不盡方,而且是整式.
(4)是最簡二次根式.因為被開方數(shù)的因式a-b開不盡方,而且是整式.
(5)是最簡二次根式.因為被開方數(shù)的因式5x開不盡方,而且是整式.
(6)不是最簡二次根式.因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.
指出:從(1),(2),(6)題可以看到如下兩個結論.
1.在二次根式的被開方數(shù)中,只要含有分數(shù)或小數(shù),就不是最簡二次根式;
2.在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式.
分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術平方根的性質。
分析:題(l)的被開方數(shù)是帶分數(shù),應把它變成假分數(shù),然后將分母有理化,把原式化成最簡二次根式.
題(2)及題(3)的被開方數(shù)是分式,先應用商的算術平方根的性質把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式.
通過例2、例3,請同學們總結出把二次根式化成最簡二次根式的方法.
答:如果被開方數(shù)是分式或分數(shù)(包括小數(shù))先利用商的算術平方根的性質,把它寫成分式的形式,然后利用分母有理化化簡.
如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡.
a.2b.3。
c.1d.0。
答案:
1.b。
2.b。
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式.
(2)如果被開方數(shù)含有分母,應去掉分母的根號.
答案:
教育工作者的二次根式教學設計篇二
在二次根式的除法這一節(jié)的學習中,這塊教學內容是在實數(shù)的基礎上,重點教學的關鍵是對二次根式能進行計算和化簡,在本節(jié)教學中,存在以下問題。
1、在教學設計中,仍然存在著對學情分析不足,主要是過高估計學生的學習能力,對以前學過的知識的復習工作做的不夠,導致后續(xù)的新知識的學習遇到不少麻煩。
2、九年級數(shù)學是新教材,在教學過程中,我的教學理念還沒有及時更新,從而導致教學不到位。在二次根式的化簡中,比較重視對具體數(shù)的化簡,對字母的要求不高,一般都確保二次根式有意義,而沒有注重要求引導學生注意二次根式中字母的取值范圍,要求培養(yǎng)學生嚴謹?shù)膶W習態(tài)度和推斷字母取值范圍的能力。剛開始對這一要求理解不到位,沒有對學生提出明確要求,也沒有重視對典型錯誤的分析。
3、在促進學生探索求知和有效學習方面還存在明顯不足。新的教學理念要求教師在課堂教學中注意引導學生探究學習,在我的課堂教學中,經常為了完成教學任務而忽視這方面的引導。在本節(jié)中,其實有許多內容可以進行這方面的嘗試。在學生探究的過程中重視不夠,若能讓學生在探究的基礎上歸納出方法,學習的效果會提高很多,學習的能力也會不斷提高。
4、在學生的學習方面,也有值得反思的地方我班的學生在老師指導下學習數(shù)學方面的積極性并不差,但自主學習方面還存在著不足。遇到困難有畏難情緒、對老師的依賴性太強、作業(yè)只求完成率而不講質量、學習的競爭意識和自我要求明顯缺乏。這些都有待于在今后的教學中進行教育和引導,加強改進,提高教學實效。
教育工作者的二次根式教學設計篇三
2.較熟練地掌握把一個式子化為最簡二次根式的方法.
重點和難點。
重點:較熟練地把二次根式化為最簡二次根式.
難點:把被開方數(shù)是多項式和分式的二次根式化為最簡二次根式.
過程設計。
請說出第(3),(4)題的解題過程.
答:第(3)題的被開方數(shù)是一個多項式,先把它分解因式,再運用積的算術平方根的性質,把根號中的平方式及平方數(shù)開出來,運算結果應化為最簡二次根式.
理化.
請說出各題的特點和解題思路.
答:(1)題的被開方數(shù)及(2)題的被開方數(shù)的分子是多項式,應化成因式積的形式,可以先分解因式,再化簡.
(3)題的被開方數(shù)的分母是兩個數(shù)的平方差,先利用平方差公式把它化為乘積形式,再根據(jù)商的算術平方根和積的算術平方根的性質及分母有理化的方法,使運算結果為最簡二次根式.
計算:
依據(jù)二次根式的乘除法的法則進行計算,最后要把計算結果化成最簡二次根式.
1.選擇題:
(7)下列化簡中,正確的是[]。
(8)下列化簡中,錯誤的是[]。
3.計算:
答案:
1.把一個式子化為最簡二次根式時,如果被開方數(shù)是多項式,應把它化成積的形式,一般可考慮先分解因式,然后再化簡.
2.如果一個式子的被開方數(shù)的分母是一個多項式,而這個多項式又不能分解因式(如課堂練習2(2)),在分母有理化時,把分子分母同乘以這個多項式.
3.二次根式的乘除法運算,運算結果一定要化為最簡二次根式.
2.計算:
答案:
最簡二次根式分二課時進行.設計中首先安排討論二次根式的被開方數(shù)是單項式以及被開方數(shù)的分母是單項式的情況,然后再討論被開方數(shù)是多項式和分母是多項式的情況.通過5個例題及課堂練習,最后達到使學生比較深刻地理解最簡二次根式的概念,達到熟練地掌握把二次根式化為最簡二次根式的目標.
教育工作者的二次根式教學設計篇四
1、通過二次根式混合運算的學習,進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。
2、在進行二次根式混合運算的過程中,體會類比思想,逐步養(yǎng)成認真仔細的學習品質,進一步提高運算能力。
教學難點:類比整式運算準確快速的進行二次根式的混合運算。
教學過程:
(學生完成練習提綱,可以討論,老師做必要的板書準備,然后巡回指導,了解情況、)。
1、學生匯報解題過程,生說師寫;。
2、發(fā)動其他學生評價補充完善;。
3、師畫龍點睛強調:。
(1)二次根式混合運算的運算順序跟有理數(shù)運算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。
(先讓學生獨立完成,老師做必要的板書準備后巡回指導,了解情況;然后讓有一定問題的學生匯報展示,發(fā)動學生評價完善,老師強調關鍵地方,總結思想方法。)。
本節(jié)課你有哪些收獲?還有什么要提醒同學們注意的。(學生總結,百花齊放,老師不做限定,沒說到的,老師補充。)。
教育工作者的二次根式教學設計篇五
初次進行“信息技術與課程整合”課程的實驗,首先感到的一個字就是“累”。也許是缺乏經驗的原因。盡管課前進行充分的準備,可是在實施的過程中,大概是傳統(tǒng)的單一型課程印記太深刻的緣故吧,總是擔心學生對知識點的掌握會產生問題!有意思的是一開始學生面對課堂上大量的可自由支配的時間也感到不會用。部分小組的學生缺乏動手探索的精神,總在觀察其他小組的進展,或是期待教師的提示。寄希望于有了現(xiàn)成的樣板后再進行模仿。使我猶感“二期課改”的必要性,絕不能再以“一言堂”、“啟發(fā)和灌輸”為教學模式了。
其次,變課堂上一對多的教學結構為學生之間鏈式學習結構,更能促進學生之間的合作與交流,使他們成為學習的主人。特別是其中一組同學,起初都不敢上機操作,你推我讓。在指導老師的幫助下,互相確定的了自己的優(yōu)勢與劣勢,進行了分工。有的負責搜索、有的負責整理、有的做筆記等等。在一段時間以后這個小組也能夠獨立的完成課題學習的任務。我想在合作學習的過程中,每個人都能認真傾聽他人的意見和見解,也是一種人際交往能力的提高。
在尋求學習資源的過程中,學生們在互相指點和幫助下,鞏固了計算機操作,并能100%應用搜索引擎進行查找,在交流心得體會的過程中,進一步學習別人的點滴經驗,逐步提高信息技術的素養(yǎng)。
時間的緊迫仍舊是整合課程中的一個矛盾,由于小組內同學的信息技術水準參差不齊,如果僅有一兩個同學進行操作,雖然表面上也實現(xiàn)了小組的要求,可是又把學生之間的差距暴露了出來。因此只能夠人人進行嘗試,互相幫助,共同完成目標。當然由于事先已經考慮到這一問題,因此部分教學內容可以留待下節(jié)課的解決。盡量保證學生獨立探究的時間,又要保證一定學習效率,這對教師的組織教學提出了很高的要求。
總之,作為一名教師,我感受到學生學習方式和習慣的小小變化,更感到自己在實驗課題方面研究上屬于較淺層次。自己也要多學習相關科研文章,設計好下一堂系列課。
教育工作者的二次根式教學設計篇六
2、掌握把二次根式化為最簡二次根式的方法。
重點:化二次根式為最簡二次根式的方法。
計算:
我們再看下面的問題:
簡,得到。
從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便。
答:
1、被開方數(shù)的因數(shù)是整數(shù)或整式;
2、被開方數(shù)中不含能開得盡方的因數(shù)或因式。
滿足上面兩個條件的二次根式叫做最簡二次根式。
例1試判斷下列各式中哪些是最簡二次根式,哪些不是?為什么?
解
(1)不是最簡二次根式。因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。整數(shù)。
(3)是最簡二次根式。因為被開方數(shù)的因式x2+y2開不盡方,而且是整式。
(4)是最簡二次根式。因為被開方數(shù)的因式a-b開不盡方,而且是整式。
(5)是最簡二次根式。因為被開方數(shù)的因式5x開不盡方,而且是整式。
(6)不是最簡二次根式。因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22。
指出:從(1),(2),(6)題可以看到如下兩個結論。
1、在二次根式的被開方數(shù)中,只要含有分數(shù)或小數(shù),就不是最簡二次根式;
2、在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式。
例2把下列各式化為最簡二次根式:
分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術平方根的性質。
例3把下列各式化成最簡二次根式:
分析:題(1)的被開方數(shù)是帶分數(shù),應把它變成假分數(shù),然后將分母有理化,把原式化成最簡二次根式。
題(2)及題(3)的被開方數(shù)是分式,先應用商的算術平方根的性質把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式。
通過例2、例3,請同學們總結出把二次根式化成最簡二次根式的方法。
答:如果被開方數(shù)是分式或分數(shù)(包括小數(shù))先利用商的算術平方根的性質,把它寫成分式的形式,然后利用分母有理化化簡。
如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡。
a、2b、3。
c、1d、0。
3、把下列各式化成最簡二次根式:
答案:
1、b。
2、b。
1、最簡二次根式必須滿足兩個條件:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。
2、把一個式子化為最簡二次根式的方法是:
(2)如果被開方數(shù)含有分母,應去掉分母的根號。
1、把下列各式化成最簡二次根式:
2、把下列各式化成最簡二次根式:
教育工作者的二次根式教學設計篇七
2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。
教學重點。
教學難點。
一個二次根式化成最簡二次根式的方法。
教學過程。
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導學生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學生回答:
二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
1.總結學生回答的內容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。
2.練習:
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1把下列各式化成最簡二次根式:
例2把下列各式化成最簡二次根式:
4.總結。
把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?
當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術平方根的性質,把開得盡方的因數(shù)或因式用它的算術平方根代替移到根號外面去。
當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質和商的算術平方根的性質化去分母。
此方法是先根據(jù)分式的基本性質把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
教育工作者的二次根式教學設計篇八
2學情分析。
本節(jié)內容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質來進行,也可以先利用分式的性質,去掉分母中的根號,再結合乘法法則和積的算術平方根的性質來進行。二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算。教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結果,明確運算方向。
3重點難點。
重點:二次根式的乘法法則與積的算術平方根的性質.。
難點:二次根式的除法法則與商的算術平方根的性質之間的關系和應用。
4教學過程。
4。1第一學時。
教學活動。
活動1【導入】復習提問,探究規(guī)律。
師生活動學生回答。
教育工作者的二次根式教學設計篇九
這節(jié)課因為有了前面學習的基礎,所以學生學習起來并不難,本節(jié)課的重點是二次根式的乘除法法則,難點是靈活運用法則進行計算和化簡。
開始可以從二次根式的性質引入,將二次根式的性質反過來就是二次根式的乘除法法則:,利用這個法則,可以進行二次根式的乘法和除法運算。
本節(jié)課中的易錯點是運算的最后結果不是最簡結果,因為學生只顧著運用法則進行計算了,忽略了二次根式的化簡,舉例說明:,這個運算過程只是運用了法則,但沒有進行化簡,應該是。
本節(jié)課中的難點是對于分母中含有根號的式子不會化簡,這應該牽涉到分母有理化,分母有理化這個概念本章課本中沒有提及,但是課后練習和習題中也有涉及,如何處理呢?舉例說明:
隨堂練習中一個題目對于這個題目,很多學生表示都不知道從何下手,只有一些程度好的學生有自己的看法,我讓學生進行了講解:,學生能將分母中不含有根號,想到用來代替,然后再利用法則進行解答,真是聰明。學生的這種做法,我給予了充分的肯定,并表揚了這位同學。并且我也用分母有理化的思想進行了另一種方法的講解,因為后面我想補一節(jié)分母有理化,所以在這里只是展示了一下過程,這樣同樣能達到化簡的目的,然后讓學生對比了一下剛才那位同學的做法,沒有展開講。
剩下的時間我主要針對法則讓學生進行了練習,做正確的小組加分,不正確的進行點評,到下課時,學生基本掌握了二次根式的乘除法的計算。
學生比較容易理解這兩個法則,下面可以學習例2,主要是讓學生通過看課本來理解法則的`應用,在學生理解例題的基礎上,讓學生思考還有沒有其他方法來解決這些題目,以此來增加學生解題的思路與方法。在這里可以拿出1-2個題目來示范。
如,可以有兩種解法:
法一:這一種也是課本上的方法,是直接利用了二次根式的乘法法則。
法二:這是利用了二次根式的性質。
通過這個題目的講解,可讓學生靈活掌握二次根式的計算方法。
再一個就是二次根式的乘除法混合運算,課本上有一個例子,,通過這個例子引出一個公式:,算是對法則的一個延伸。學生通過這個公式,也可以進行一些二次根式的運算。
教育工作者的二次根式教學設計篇十
課型:新授課。
教學目標:
2.能力目標:能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。
3.情感態(tài)度:培養(yǎng)學生善于思考,一絲不茍的科學精神。
重難點分析:
重點:能熟練進行二次根式的加減運算。
難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應用。
教學關鍵:通過復習舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設問題激發(fā)學生求知欲;通過學生全面參與學習(分層次要求),達到每個學生在學習數(shù)學上有不同的發(fā)展。
運用教具:小黑板等。
教學過程:
問題與情景。
師生活動。
設計目的。
出自 m.sunshinestudy.com
活動一:
情景引入,導學展示。
1.把下列二次根式化為最簡二次根式上述兩組二次根式,有什么特點?
這道題是舊知識的回顧,老師可以找同學直接回答。對于問題,老師要關注:學生是否能熟練得到正確答案。教師傾聽學生的交流,指導學生探究。
問:什么樣的二次根式能進行加減運算,運算到那一步為止。
由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進行加減。
加強新舊知識的聯(lián)系。通過觀察,初步認識同類二次根式。
教育工作者的二次根式教學設計篇十一
這節(jié)課的主要目標有二:。
2。體驗到分母有理化最簡方法是先局部化簡;。
對于第一個目標期望學生能自行歸納出來最簡二次根式一般形式就最好,對于第二個目標讓學生自行體驗到先化簡再分母有理化的方法是最簡方法.
今天上午結束這節(jié)課后,頗有感觸.同學們討論問題提的時候自始至終非常專注,而且很高效,有三個幾乎從來不舉手回答問題的同學能大膽走上講臺給大家講解二次根式一道除法題的三種解法,他們的登臺引起全班同學的歡呼.這是組員們的'努力所帶來的結果.對于這節(jié)課有以下幾點值得思考:。
問題的設置:。
這節(jié)課為了讓同學掌握二次根式的定義,我直接拋出“什么是二次根式”。
這個問題讓同學們去討論,但后來效果并沒有達到我想象的高度.其實后來想想這個問題的設置不能過于直接,應當列舉諸多二次根式,讓同學們判斷哪些是二次根式,并討論其理由,這樣引導學生從感性過渡到理性.從而順利掌握這個概念的本質.所以問題的設置不能死板,教條,要多樣化,其目的是讓學生能高效的掌握知識本身.
教學的規(guī)律:
1.循序漸進:這節(jié)課原本很希望學生能在一節(jié)課內就體會到先局部化簡后在進行分母有理化的方法計算起來比較簡潔.但這節(jié)課并沒有實現(xiàn)這個目的,而且沒有想到學生竟然給出多種方法.我想這一節(jié)課是否,對于第二個教學目標只能是一個循序漸進的過程,應當把這個問題延伸到下一節(jié)課,可以在下一節(jié)課中把學生的課后作業(yè)的解法對比,讓學生去體會哪種方法更好,更簡潔.不要急于在這一節(jié)課中去解決,這一節(jié)課只要能用自己的方法解決就行.
2.作業(yè)的處理:以前處理作業(yè)中總是對于做錯的題目給一個紅叉,并每一份作業(yè)評分.從現(xiàn)在開始,作業(yè)不再給紅叉,用橫線標注代替紅叉,也不給評分.讓孩子們關注的永遠是知識本身,對于作業(yè)始終強調的是誠實的獨立作業(yè),認真的糾錯這兩點.
教育工作者的二次根式教學設計篇十二
重點:化二次根式為最簡二次根式的方法.
計算:
我們再看下面的問題:
簡,得到。
從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便.
答:
1.被開方數(shù)的因數(shù)是整數(shù)或整式;
2.被開方數(shù)中不含能開得盡方的因數(shù)或因式.
滿足上面兩個條件的二次根式叫做最簡二次根式.
(l)不是最簡二次根式.因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式.
整數(shù).
(3)是最簡二次根式.因為被開方數(shù)的因式x2+y2開不盡方,而且是整式.
(4)是最簡二次根式.因為被開方數(shù)的因式a-b開不盡方,而且是整式.
(5)是最簡二次根式.因為被開方數(shù)的因式5x開不盡方,而且是整式.
(6)不是最簡二次根式.因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.
指出:從(1),(2),(6)題可以看到如下兩個結論.
1.在二次根式的被開方數(shù)中,只要含有分數(shù)或小數(shù),就不是最簡二次根式;
2.在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式.
分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術平方根的性質。
分析:題(l)的被開方數(shù)是帶分數(shù),應把它變成假分數(shù),然后將分母有理化,把原式化成最簡二次根式.
題(2)及題(3)的被開方數(shù)是分式,先應用商的算術平方根的性質把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式.
通過例2、例3,請同學們總結出把二次根式化成最簡二次根式的方法.
答:如果被開方數(shù)是分式或分數(shù)(包括小數(shù))先利用商的算術平方根的性質,把它寫成分式的形式,然后利用分母有理化化簡.
如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡.
的二次根式的式子有_____個.[]。
a.2b.3。
c.1d.0。
答案:
1.b。
2.b。
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式.
(2)如果被開方數(shù)含有分母,應去掉分母的根號.
答案:
教育工作者的二次根式教學設計篇十三
2.掌握把二次根式化為最簡二次根式的方法。
重點和難點。
過程設計。
計算:
我們再看下面的問題:
簡,得到。
從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便。
答:
1.被開方數(shù)的因數(shù)是整數(shù)或整式;
2.被開方數(shù)中不含能開得盡方的因數(shù)或因式。
滿足上面兩個條件的二次根式叫做最簡二次根式。
(l)不是最簡二次根式。因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。
整數(shù)。
(3)是最簡二次根式。因為被開方數(shù)的因式x2+y2開不盡方,而且是整式。
(4)是最簡二次根式。因為被開方數(shù)的因式a-b開不盡方,而且是整式。
(5)是最簡二次根式。因為被開方數(shù)的因式5x開不盡方,而且是整式。
(6)不是最簡二次根式。因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.
指出:從(1),(2),(6)題可以看到如下兩個結論。
1.在二次根式的被開方數(shù)中,只要含有分數(shù)或小數(shù),就不是最簡二次根式;
2.在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式。
分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術平方根的性質。
分析:題(l)的被開方數(shù)是帶分數(shù),應把它變成假分數(shù),然后將分母有理化,把原式化成最簡二次根式。
題(2)及題(3)的被開方數(shù)是分式,先應用商的算術平方根的性質把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式。
通過例2、例3,請同學們總結出把二次根式化成最簡二次根式的方法。
答:如果被開方數(shù)是分式或分數(shù)(包括小數(shù))先利用商的算術平方根的性質,把它寫成分式的形式,然后利用分母有理化化簡。
如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡。
a.2b.3。
c.1d.0。
3.把下列各式化成最簡二次根式:
答案:
1.b。
2.b。
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。
2.把一個式子化為最簡二次根式的方法是:
(2)如果被開方數(shù)含有分母,應去掉分母的根號。
1.把下列各式化成最簡二次根式:
2.把下列各式化成最簡二次根式:
答案:
教育工作者的二次根式教學設計篇十四
教學目標:
掌握二次根式的概念;根據(jù)二次根式的概念掌握被開方數(shù)的取值范圍。
教學重難點:
重點:二次根式的概念以及二次根式有意義的條件;
難點:根據(jù)要求求滿足條件的字母的取值范圍。
教學方法:先學后教,當堂訓練。
課時安排:一課時。
教學過程:
1、知識回顧。
1、算數(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,那么這個正數(shù)x叫做a的`算數(shù)平方根。
2、正數(shù)的算數(shù)平方根是正數(shù),0的算數(shù)平方根是0,負數(shù)沒有平方根。
2、板書課題。
3、出示學習目標。
4、出示自學指導。
自學教材2、3頁,完成下列各題:
1、完成第二頁思考題,找出二次根式的概念;
3、式子有意義的條件;
4、完成《基礎訓練》課前預習。
5、檢測。
3、式子有意義的條件。
4、課前預習講解。
6、練習。
1、教材3頁練習題;
2、習題16.1第1、7題;
3、《基礎訓練》課堂練習。
7、小結。
8、作業(yè)。
1、課本19頁第一題。
2、《基礎訓練》課后練習。
3、思考學習拓展。
9、教學反思。
1、因為學生已學習過算數(shù)平方根,所以對本節(jié)課知識能較快掌握;
2、本節(jié)課的關鍵在于掌握二次根式有意義的條件:被開方數(shù)大于等于0。同時結合之前所學知識能解答式子有意義時字母的取值范圍。
3、學習之初應加強練習,把課堂還給學生,發(fā)揮學生主動型。
教育工作者的二次根式教學設計篇十五
1.使學生了解最簡二次根式的概念和同類二次根式的概念.。
2.能判斷二次根式中的同類二次根式.。
3.會用同類二次根式進行二次根式的加減.。
(二)能力訓練點。
通過本節(jié)的學習,培養(yǎng)學生的思維能力并提高學生的運算能力.。
(三)德育滲透點。
(四)美育滲透點。
通過二次根式的加減,滲透二次根式化簡合并后的形式簡單美.。
二、學法引導。
三、重點·難點·疑點及解決辦法。
四、課時安排。
2課時。
五、教具學具準備。
投影片。
1.復習最簡二根式整式及的加減運算,引入二次根式的加減運算,盡量讓學生回答問題.。
七、教學步驟。
(一)明確目標。
(二)整體感知。
教育工作者的二次根式教學設計篇十六
2、內容解析。
二次根式除法法則及商的算術平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學習了除法法則后,就有比較豐富的運算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運算的基礎。
基于以上分析,確定本節(jié)課的教學重點:二次根式的除法法則和商的算術平方根的性質,最簡二次根式。
1、教學目標。
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術平方根的性質;
(3)理解最簡二次根式的概念、
2、目標解析。
(1)學生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;
(2)學生能理解除法法則逆用的意義,結合二次根式的概念、性質、乘除法法則,對簡單的二次根式進行運算。
(3)通過觀察二次根式的運算結果,理解最簡二次根式的特征,能將二次根式的運算結果化為最簡二次根式。
本節(jié)內容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質來進行,也可以先利用分式的性質,去掉分母中的根號,再結合乘法法則和積的算術平方根的性質來進行、二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算、教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結果,明確運算方向。
本節(jié)課的教學難點為:二次根式的除法法則與商的算術平方根的性質之間的關系和應用。
1、復習提問,探究規(guī)律。
問題1二次根式的乘法法則是什么內容?化簡二次根式的一般步驟怎樣?
師生活動學生回答。
【設計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則。
教育工作者的二次根式教學設計篇十七
3.a、b層同學自主學習15頁例1、例2、例3,c層同學至少完成例1、例2的學習。
小結:
這節(jié)課你學到了什么知識?你有什么收獲?
作業(yè):課堂練習冊第5、6頁。
自學的`同時抽查部分同學在黑板上板書計算過程。抽2名c層同學在黑板上完成例1板書過程,學生在計算時若出現(xiàn)錯誤,抽2名b層同學訂正。抽2名b層同學在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名a層同學訂正。抽1名a層同學在黑板上完成例3板書過程,并做適當?shù)姆治鲋v解。
此題是聯(lián)系實際的題目,需要學生先列式,再計算。并將結果精確到0.1m,學生考慮問題要全面,不能漏掉任何一段鋼材。
老師提示:
1)解決問題的方案是否得當;2)考慮的問題是否全面。3)計算是否準確。
a層同學完成16頁練習1、2、3;b層同學完成練習1、2,可選做第3題;c層同學盡量完成練習1、2。多數(shù)同學完成后,讓學生在小組內互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學。例如:抽3名c層同學口答練習1;抽4名b層或c層同學在黑板上板書練習第2題;抽1名a層或b層同學在黑板上板書練習第3題后再分析講解。
點撥:
1)對的化簡是否正確;
2)當根式中出現(xiàn)小數(shù)、分數(shù)、字母時,是否能正確處理;
3)運算法則的運用是否正確。
先測試,再小組內互批,查找問題。學生反思本節(jié)課學到的知識,談自己的感受。
小結時教師要關注:
1)學生是否抓住本課的重點;
2)對于常見錯誤的認識。
把學習目標由高到低分為a、b、c三個層次,教學中做到分層要求。
學生學習經歷由淺到深的過程,可以提高學生能力,同時有利于激發(fā)學生的探索知識的欲望。
將二次根式的加減運算融入實際問題中去,提高了學生的學習興趣和對數(shù)學知識的應用意識和能力。
小組成員互相檢查學生對于新的知識掌握的情況,鞏固學生剛掌握的知識能力。達到共同把關、合作互助的目的。
培養(yǎng)學生的計算的準確性,以培養(yǎng)學生科學的精神。
對課堂的問題及時反饋,使學生熟練掌握新知識。
每個學生對于知識的理解程度不同,學生回答時教師要多鼓勵學生。
教育工作者的二次根式教學設計篇十八
本節(jié)內容出自九年級數(shù)學上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學解決實際問題的意識和能力。另外,通過本小節(jié)學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。
本節(jié)課的內容是知識的延續(xù)和創(chuàng)新,學生積極主動的投入討論、交流、建構中,自主探索、動手操作、協(xié)作交流,全班學生具有較扎實的知識和創(chuàng)新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎差、自學能力差,因此要提供賞識性評價教學策略,給予個別關照、心理暗示以及適當?shù)木窦?,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學習任務。
新課程有效課堂教學明確倡導,學生是學習的主人,在學生自學文本的基礎上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉變?yōu)閷W生的自主性、探究性、合作性學習活動的設計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設置開放的、面向實際的、富有挑戰(zhàn)性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學習習慣,掌握學習策略,并根據(jù)活動中示范和指導培養(yǎng)學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。
會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。
通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經歷由實際問題引入數(shù)學問題的過程,發(fā)展學生的抽象概括能力。
通過對二次根式加減法的探究,激發(fā)學生的探索熱情,讓學生充分參與到數(shù)學學習的過程中來,使他們體驗到成功的樂趣。
合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。
難點:
關鍵問題:
了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。
1.引導發(fā)現(xiàn)法:在教師的啟發(fā)引導下,鼓勵學生積極參與,與實際問題相結合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學生自主探索,合作學習,歸納結論,掌握規(guī)律。
2.類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。
3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現(xiàn)全優(yōu)的教育效果。
教育工作者的二次根式教學設計篇十九
1、通過二次根式混合運算的學習,進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。
2、在進行二次根式混合運算的過程中,體會類比思想,逐步養(yǎng)成認真仔細的學習品質,進一步提高運算能力。
教學難點:類比整式運算準確快速的進行二次根式的混合運算。
教學過程:
一、情境誘導。
二、練習指導。
(學生完成練習提綱,可以討論,老師做必要的板書準備,然后巡回指導,了解情況、)。
三、展示歸納。
1、學生匯報解題過程,生說師寫;。
2、發(fā)動其他學生評價補充完善;。
3、師畫龍點睛強調:。
(1)二次根式混合運算的運算順序跟有理數(shù)運算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。
四、變式練習。
(先讓學生獨立完成,老師做必要的板書準備后巡回指導,了解情況;然后讓有一定問題的學生匯報展示,發(fā)動學生評價完善,老師強調關鍵地方,總結思想方法。)。
五、小結。
本節(jié)課你有哪些收獲?還有什么要提醒同學們注意的。(學生總結,百花齊放,老師不做限定,沒說到的,老師補充。)。
六、布置作業(yè)。