總結(jié)是一種對(duì)自己和他人負(fù)責(zé)的態(tài)度,可以推動(dòng)我們不斷進(jìn)步。總結(jié)應(yīng)該實(shí)事求是,既要客觀評(píng)價(jià)自己的成績(jī),也要坦然面對(duì)自己的不足。以下是一些寫好總結(jié)的要素和步驟,希望對(duì)大家有所啟發(fā)。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇一
有一個(gè)角是直角的平行四邊形叫做矩形。
(1)具有平行四邊形的一切性質(zhì)。
(2)矩形的四個(gè)角都是直角。
(3)矩形的對(duì)角線相等。
(4)矩形是軸對(duì)稱圖形。
(1)定義:有一個(gè)角是直角的平行四邊形是矩形。
(2)定理1:有三個(gè)角是直角的四邊形是矩形。
(3)定理2:對(duì)角線相等的平行四邊形是矩形。
s矩形=長(zhǎng)×寬=ab。
1、正方形的概念。
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)。
(1)具有平行四邊形、矩形、菱形的一切性質(zhì);
(2)正方形的四個(gè)角都是直角,四條邊都相等;
(3)正方形的兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;
(4)正方形是軸對(duì)稱圖形,有4條對(duì)稱軸;
(6)正方形的一條對(duì)角線上的一點(diǎn)到另一條對(duì)角線的兩端點(diǎn)的距離相等。
3、正方形的判定。
(1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個(gè)角是直角。
(2)判定一個(gè)四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇二
函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對(duì)定理的熟悉程度、運(yùn)用程度。
解析幾何。高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。
掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問題。
理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡(jiǎn)單的應(yīng)用問題。
理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡(jiǎn)單的應(yīng)用問題。
掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡(jiǎn)單的問題。
了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
了解等可能性事件的概率的意義,會(huì)用排列組合的基本公式計(jì)算一些等可能性事件的概率。
了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇三
3、一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
有理數(shù)加法的運(yùn)算律
1、加法的交換律:a+b=b+a;
2、加法的結(jié)合律:(a+b)+c=a+(b+c)
有理數(shù)減法法則
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)
有理數(shù)乘法法則
1、兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
2、任何數(shù)同零相乘都得零;
3、幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇四
:正、負(fù)數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負(fù)數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負(fù)數(shù)。我們可以用正數(shù)與負(fù)數(shù)表示具有相反意義的量。
:有理數(shù)的概念和分類:整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。有理數(shù)的分類主要有兩種:
注:有限小數(shù)和無(wú)限循環(huán)小數(shù)都可看作分?jǐn)?shù)。
:數(shù)軸的概念:像下面這樣規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸。
:絕對(duì)值的概念:
(1)幾何意義:數(shù)軸上表示a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值,記作|a|;
(2)代數(shù)意義:一個(gè)正數(shù)的絕對(duì)值是它的本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);零的絕對(duì)值是零。
注:任何一個(gè)數(shù)的絕對(duì)值均大于或等于0(即非負(fù)數(shù)).
:相反數(shù)的概念:
(2)代數(shù)意義:符號(hào)不同但絕對(duì)值相等的兩個(gè)數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。
:有理數(shù)大小的比較:
有理數(shù)大小比較的基本法則:正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的大。
用絕對(duì)值進(jìn)行有理數(shù)大小的比較:兩個(gè)正數(shù),絕對(duì)值大的正數(shù)大;兩個(gè)負(fù)數(shù),絕對(duì)值大的負(fù)數(shù)反而小。
:有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
:有理數(shù)加法運(yùn)算律:
加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。
加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
:有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
:有理數(shù)加減混合運(yùn)算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,然后省略括號(hào)和加號(hào),并運(yùn)用加法法則、加法運(yùn)算律進(jìn)行計(jì)算。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇五
主要是考函數(shù)和導(dǎo)數(shù),因?yàn)檫@是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。
對(duì)于這部分知識(shí)重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來(lái)解三角形,這方面難度并不大。
數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。
在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。
概率和統(tǒng)計(jì)主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨(dú)立事件和獨(dú)立重復(fù)事件發(fā)生的概率。
這部分內(nèi)容說(shuō)起來(lái)容易做起來(lái)難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動(dòng)點(diǎn)問題;第三類是弦長(zhǎng)問題;第四類是對(duì)稱問題;第五類重點(diǎn)問題,這類題往往覺得有思路卻沒有一個(gè)清晰的答案,但需要要掌握比較好的算法,來(lái)提高做題的準(zhǔn)確度。
同學(xué)們?cè)谧詈蟮膫淇紡?fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭(zhēng)取能解題就解題,能思考就思考。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇六
1、買文具---(小面額的人民幣)。
2、買衣服---(大面額的人民幣)。
3、小小商店---(進(jìn)行有關(guān)錢款的簡(jiǎn)單計(jì)算)。
買文具(小面額的人民幣)。
1、認(rèn)識(shí)各種小面額的人民幣。
2、體會(huì)小面額人民幣之間的換算關(guān)系。
3、從實(shí)際問題中理解“付出的錢、應(yīng)付的錢、應(yīng)找回的錢”三者之間的關(guān)系。
4、在購(gòu)物情景中進(jìn)行有關(guān)錢款的簡(jiǎn)單計(jì)算。
買衣服(大面額的人民幣)。
1、讓學(xué)生在活動(dòng)中認(rèn)識(shí)大面額的人民幣,能從相同點(diǎn)和不同點(diǎn)上辨認(rèn)。
2、會(huì)計(jì)算大面額人民幣之間的換算。
3、在購(gòu)物活動(dòng)中體會(huì)大面額人民幣的作用,運(yùn)用人民幣的兌換知識(shí),初步掌握付錢的方法。
小小商店(進(jìn)行有關(guān)錢款的簡(jiǎn)單計(jì)算)。
1.在購(gòu)物情景中會(huì)進(jìn)行有關(guān)錢款的簡(jiǎn)單計(jì)算。
2.通過購(gòu)物中的活動(dòng),了解付費(fèi)的方式是多樣化的。
3.通過購(gòu)物的活動(dòng),鞏固復(fù)習(xí)100以內(nèi)的加減法計(jì)算。
4.購(gòu)物中能解決一些簡(jiǎn)單的實(shí)際問題。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇七
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說(shuō)明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。
常見考法
(1)考查與時(shí)鐘有關(guān)的問題;(2)角的計(jì)算與度量。
誤區(qū)提醒
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。
【典型例題】(20xx云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉(zhuǎn)角的度數(shù)是( )
【答案】3時(shí)到6時(shí),時(shí)針旋轉(zhuǎn)的是一個(gè)周角的1/4,故是90度 ,本題選c.
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇八
0既不是正數(shù),也不是負(fù)數(shù)。
(2)正數(shù)和負(fù)數(shù)表示相反意義的量。
(1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長(zhǎng)度。數(shù)軸是一條直線。
(2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。
(3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)。
(2)相反數(shù):符號(hào)不同、絕對(duì)值相等的兩個(gè)數(shù)互為相反數(shù)。
若a、b互為相反數(shù),則a+b=0;
相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。
(3)絕對(duì)值最小的數(shù)是0;絕對(duì)值是本身的數(shù)是非負(fù)數(shù)。
最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。
兩個(gè)正數(shù)比較:絕對(duì)值大的那個(gè)數(shù)大;
兩個(gè)負(fù)數(shù)比較:先算出它們的絕對(duì)值,絕對(duì)值大的反而小。
(1)符號(hào)相同的兩數(shù)相加:和的符號(hào)與兩個(gè)加數(shù)的符號(hào)一致,和的絕對(duì)值等于兩個(gè)加數(shù)絕對(duì)值之和.
(2)符號(hào)相反的兩數(shù)相加:當(dāng)兩個(gè)加數(shù)絕對(duì)值不等時(shí),和的符號(hào)與絕對(duì)值較大的加數(shù)的符號(hào)相同,和的絕對(duì)值等于加數(shù)中較大的絕對(duì)值減去較小的絕對(duì)值;當(dāng)兩個(gè)加數(shù)絕對(duì)值相等時(shí),兩個(gè)加數(shù)互為相反數(shù),和為零.
(3)一個(gè)數(shù)同零相加,仍得這個(gè)數(shù).
加法的交換律:a+b=b+a
加法的結(jié)合律:(a+b)+c=a+(b+c)
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
例如:14+12+(-25)+(-17)可以寫成省略括號(hào)的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”
兩個(gè)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘;任何數(shù)與0相乘都得0。
第一步:確定積的符號(hào) 第二步:絕對(duì)值相乘
當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正。幾個(gè)有理數(shù)相乘,有一個(gè)因數(shù)為零,積就為零。
乘積為1的兩個(gè)數(shù)互為倒數(shù),0沒有倒數(shù)。
正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個(gè)數(shù)符號(hào)一定相同)
倒數(shù)是本身的只有1和-1。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇九
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;。
1平角=2直角=180°;。
1直角=90°;。
1度=60分=3600秒(即:1°=60′=3600″);。
1分=60秒(即:1′=60″).
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說(shuō)明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;。
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);。
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。
常見考法。
(1)考查與時(shí)鐘有關(guān)的問題;(2)角的計(jì)算與度量。
誤區(qū)提醒。
角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。
【典型例題】(20xx云南曲靖)從3時(shí)到6時(shí),鐘表的時(shí)針旋轉(zhuǎn)角的度數(shù)是()。
【答案】3時(shí)到6時(shí),時(shí)針旋轉(zhuǎn)的是一個(gè)周角的1/4,故是90度,本題選c.
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十
1、重心的定義:平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。
2、幾種幾何圖形的重心:
(1)線段的重心就是線段的中點(diǎn);
(2)平行四邊形及特殊平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn);
(3)三角形的三條中線交于一點(diǎn),這一點(diǎn)就是三角形的重心;
(4)任意多邊形都有重心,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過這兩點(diǎn)鉛垂線的交點(diǎn)就是這個(gè)多邊形的重心。
提示:
(1)無(wú)論幾何圖形的形狀如何,重心都有且只有一個(gè);
(2)從物理學(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的力矩相同。
3、常見圖形重心的性質(zhì):
(1)線段的重心把線段分為兩等份;
(2)平行四邊形的重心把對(duì)角線分為兩等份;
(3)三角形的重心把中線分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對(duì)邊中點(diǎn)距離占1份)。
上面對(duì)重心知識(shí)點(diǎn)的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識(shí)。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十一
經(jīng)過一點(diǎn)可以作無(wú)數(shù)個(gè)圓。
經(jīng)過兩點(diǎn)也可以作無(wú)數(shù)個(gè)圓,且圓心都在連結(jié)這兩點(diǎn)的線段的垂直平分線上。
定理:過不共線的三個(gè)點(diǎn),可以作且只可以作一個(gè)圓。
推論:三角形的三邊垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)就是三角形的外心。
三角形的三條高線的交點(diǎn)叫三角形的垂心。
1.2垂徑定理。
圓是中心對(duì)稱圖形;圓心是它的對(duì)稱中心。
圓是周對(duì)稱圖形,任一條通過圓心的直線都是它的對(duì)稱軸。
定理:垂直于弦的直徑平分這條弦,并且評(píng)分弦所對(duì)的兩條弧。
推論1:平分弦(不是直徑)的直徑垂直于弦并且平分弦所對(duì)的兩條弧。
推論2:弦的垂直平分弦經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。
推論3:平分弦所對(duì)的一條弧的直徑,垂直評(píng)分弦,并且平分弦所對(duì)的另一條弧。
1.3弧、弦和弦心距。
定理:在同圓或等圓中,相等的弧所對(duì)的弦相等,所對(duì)的弦的弦心距相等。
二圓與直線的位置關(guān)系。
2.1圓與直線的位置關(guān)系。
如果一條直線和一個(gè)圓沒有公共點(diǎn),我們就說(shuō)這條直線和這個(gè)圓相離。
定理:經(jīng)過圓的半徑外端點(diǎn),并且垂直于這條半徑的直線是這個(gè)圓的切線。
定理:圓的切線垂直經(jīng)過切點(diǎn)的半徑。
推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。
推論2:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。
直線和圓的位置關(guān)系只能由相離、相切和相交三種。
2.2三角形的內(nèi)切圓。
定理:三角形的三個(gè)內(nèi)角平分線交于一點(diǎn),這點(diǎn)是三角形的內(nèi)心。
2.3切線長(zhǎng)定理。
2.4圓的外切四邊形。
定理:圓的外切四邊形的兩組對(duì)邊的和相等。
定理:如果四邊形兩組對(duì)邊的和相等,那么它必有內(nèi)切圓。
三圓與圓的位置關(guān)系。
3.1兩圓的位置關(guān)系。
經(jīng)過兩個(gè)圓的圓心的直線,叫做兩圓的連心線,兩個(gè)圓心之間的距離叫做圓心距。
定理:兩圓的連心線是兩圓的對(duì)稱軸,并且兩圓相切時(shí),它們切點(diǎn)在連心線上。
(1)兩圓外離dr+r。
(2)兩圓外切d=r+r。
(3)兩圓相交r-rdr)。
(4)兩圓內(nèi)切d=r-r(rr)。
(5)兩圓內(nèi)含dr)。
特殊情況,兩圓是同心圓d=0。
3.2兩圓的公切線。
定理:兩圓的兩條外公切線的長(zhǎng)相等;兩圓的兩條內(nèi)公切線的長(zhǎng)也相等。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十二
相似比:相似多邊形對(duì)應(yīng)邊的比值。
2、相似三角形。
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;
如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么兩個(gè)三角形相似。
3相似三角形的周長(zhǎng)和面積。
相似三角形(多邊形)的周長(zhǎng)的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似。
位似圖形:兩個(gè)多邊形相似,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十三
1. 概念:用基本的運(yùn)算符號(hào)(加、減、乘、除、乘方、開方)把數(shù)與字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。
2. 代數(shù)式的值:用數(shù)代替代數(shù)式里的字母,按照代數(shù)式的運(yùn)算關(guān)系,計(jì)算得出的結(jié)果。
二、整式
單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
1. 單項(xiàng)式:1)數(shù)與字母的乘積這樣的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)或字母(可以是兩個(gè)數(shù)字或字母相乘)也是單項(xiàng)式。
2) 單項(xiàng)式的系數(shù):?jiǎn)雾?xiàng)式中的 數(shù)字因數(shù)及性質(zhì)符號(hào)叫做單項(xiàng)式的系數(shù)。
3) 單項(xiàng)式的次數(shù):一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。
2. 多項(xiàng)式:1)幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),其中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。一個(gè)多項(xiàng)式有幾項(xiàng)就叫做幾項(xiàng)式。
2)多項(xiàng)式的次數(shù):多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù),就是這個(gè)多項(xiàng)式的次數(shù)。
3. 多項(xiàng)式的排列:
1).把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從大到小的順序排列起來(lái),叫做把多項(xiàng)式按這個(gè)字母降冪排列。
2).把一個(gè)多項(xiàng)式按某一個(gè)字母的指數(shù)從小到大的順序排列起來(lái),叫做把多項(xiàng)式按這個(gè)字母升冪排列。
由于單項(xiàng)式的項(xiàng),包括它前面的性質(zhì)符號(hào),因此在排列時(shí),仍需把每一項(xiàng)的性質(zhì)符號(hào)看作是這一項(xiàng)的一部分,一起移動(dòng)。
三、整式的運(yùn)算
1. 同類項(xiàng)——所含字母相同,并且相同字母的次數(shù)也相同的項(xiàng)叫做同類項(xiàng),幾個(gè)常數(shù)項(xiàng)也叫同類項(xiàng)。同類項(xiàng)與系數(shù)無(wú)關(guān),與字母排列的順序也無(wú)關(guān)。
2. 合并同類項(xiàng):把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng)叫做合并同類項(xiàng)。即同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
3. 整式的加減:有括號(hào)的先算括號(hào)里面的,然后再合并同類項(xiàng)。
4. 冪的運(yùn)算:
5. 整式的乘法:
1) 單項(xiàng)式與單項(xiàng)式相乘法則:把它們的系數(shù)、同底數(shù)冪分別相乘,其余只在一個(gè)單項(xiàng)式里含有的字母連同它的指數(shù)作為積的因式。
2) 單項(xiàng)式與多項(xiàng)式相乘法則:用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的`積相加。
3) 多項(xiàng)式與多項(xiàng)式相乘法則:先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
6. 整式的除法
1) 單項(xiàng)式除以單項(xiàng)式:把系數(shù)與同底數(shù)冪分別相除作為上的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式。
2) 多項(xiàng)式除以單項(xiàng)式:把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加。
四、因式分解——把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式
1) 提公因式法:(公因式——多項(xiàng)式各項(xiàng)都含有的公共因式)吧公因式提到括號(hào)外面,將多項(xiàng)式寫成因式乘積的形式。 取各項(xiàng)系數(shù)的最大公約數(shù)作為因式的系數(shù),取相同字母最低次冪的積。公因式可以是單項(xiàng)式,也可以是多項(xiàng)式。
2) 公式法:a.平方差公式; b.完全平方公式
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十四
2、子集;。
3、補(bǔ)集;。
4、交集;。
5、并集;。
6、邏輯連結(jié)詞;。
7、四種命題;。
8、充要條件。
1、映射;。
2、函數(shù);。
3、函數(shù)的單調(diào)性;。
4、反函數(shù);。
5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;。
6、指數(shù)概念的擴(kuò)充;。
7、有理指數(shù)冪的運(yùn)算;。
8、指數(shù)函數(shù);。
9、對(duì)數(shù);。
10、對(duì)數(shù)的運(yùn)算性質(zhì);。
11、對(duì)數(shù)函數(shù)。
12、函數(shù)的應(yīng)用舉例。
1、數(shù)列;。
2、等差數(shù)列及其通項(xiàng)公式;。
3、等差數(shù)列前n項(xiàng)和公式;。
4、等比數(shù)列及其通頂公式;。
5、等比數(shù)列前n項(xiàng)和公式。
1、角的概念的推廣;。
2、弧度制;。
3、任意角的三角函數(shù);。
4、單位圓中的三角函數(shù)線;。
5、同角三角函數(shù)的基本關(guān)系式;。
6、正弦、余弦的誘導(dǎo)公式;。
7、兩角和與差的正弦、余弦、正切;。
8、二倍角的正弦、余弦、正切;。
9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);。
10、周期函數(shù);。
11、函數(shù)的奇偶性;。
12、函數(shù)的圖象;。
13、正切函數(shù)的圖象和性質(zhì);。
14、已知三角函數(shù)值求角;。
15、正弦定理;。
16、余弦定理;。
17、斜三角形解法舉例。
1、向量;。
2、向量的加法與減法;。
3、實(shí)數(shù)與向量的積;。
4、平面向量的坐標(biāo)表示;。
5、線段的定比分點(diǎn);。
6、平面向量的數(shù)量積;。
7、平面兩點(diǎn)間的距離;。
8、平移。
1、不等式;。
2、不等式的基本性質(zhì);。
3、不等式的證明;。
4、不等式的解法;。
5、含絕對(duì)值的不等式。
1、直線的.傾斜角和斜率;。
2、直線方程的點(diǎn)斜式和兩點(diǎn)式;。
3、直線方程的一般式;。
轉(zhuǎn)載自 KAoyanMiji.cOM
4、兩條直線平行與垂直的條件;。
5、兩條直線的交角;。
6、點(diǎn)到直線的距離;。
7、用二元一次不等式表示平面區(qū)域;。
8、簡(jiǎn)單線性規(guī)劃問題;。
9、曲線與方程的概念;。
10、由已知條件列出曲線方程;。
11、圓的標(biāo)準(zhǔn)方程和一般方程;。
12、圓的參數(shù)方程。
1、橢圓及其標(biāo)準(zhǔn)方程;。
2、橢圓的簡(jiǎn)單幾何性質(zhì);。
3、橢圓的參數(shù)方程;。
4、雙曲線及其標(biāo)準(zhǔn)方程;。
5、雙曲線的簡(jiǎn)單幾何性質(zhì);。
6、拋物線及其標(biāo)準(zhǔn)方程;。
7、拋物線的簡(jiǎn)單幾何性質(zhì)。
1、平面及基本性質(zhì);。
2、平面圖形直觀圖的畫法;。
3、平面直線;。
4、直線和平面平行的判定與性質(zhì);。
5、直線和平面垂直的判定與性質(zhì);。
6、三垂線定理及其逆定理;。
7、兩個(gè)平面的位置關(guān)系;。
8、空間向量及其加法、減法與數(shù)乘;。
9、空間向量的坐標(biāo)表示;。
10、空間向量的數(shù)量積;。
11、直線的方向向量;。
12、異面直線所成的角;。
13、異面直線的公垂線;。
14、異面直線的距離;。
15、直線和平面垂直的性質(zhì);。
16、平面的法向量;。
17、點(diǎn)到平面的距離;。
18、直線和平面所成的角;。
19、向量在平面內(nèi)的射影;。
20、平面與平面平行的性質(zhì);。
21、平行平面間的距離;。
22、二面角及其平面角;。
23、兩個(gè)平面垂直的判定和性質(zhì);。
24、多面體;。
25、棱柱;。
26、棱錐;。
27、正多面體;。
28、球。
1、分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;。
2、排列;。
3、排列數(shù)公式;。
4、組合;。
5、組合數(shù)公式;。
6、組合數(shù)的兩個(gè)性質(zhì);。
7、二項(xiàng)式定理;。
8、二項(xiàng)展開式的性質(zhì)。
1、隨機(jī)事件的概率;。
2、等可能事件的概率;。
3、互斥事件有一個(gè)發(fā)生的概率;。
4、相互獨(dú)立事件同時(shí)發(fā)生的概率;。
5、獨(dú)立重復(fù)試驗(yàn)。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十五
任何正整數(shù)都是0的約數(shù)。
4的正約數(shù)有:1、2、4。
6的正約數(shù)有:1、2、3、6。
10的正約數(shù)有:1、2、5、10。
12的正約數(shù)有:1、2、3、4、6、12。
15的正約數(shù)有:1、3、5、15。
18的正約數(shù)有:1、2、3、6、9、18。
20的正約數(shù)有:1、2、4、5、10、20。
注意:一個(gè)數(shù)的約數(shù)必然包括1及其本身。
2、約數(shù)的個(gè)數(shù)怎么求。
要用到約數(shù)個(gè)數(shù)定理。
需要指出來(lái)的是,a1,a2,a3……都是a的質(zhì)因數(shù)。r1,r2,r3……是a1,a2,a3……的指數(shù)。
比如,360=2^3_3^2_5(^是次方的意思)。
所以個(gè)數(shù)是(3+1)_(2+1)_(1+1)=24個(gè)。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十六
1、靜態(tài)的觀點(diǎn)有兩個(gè)平行的平面,其他的面是曲面;動(dòng)態(tài)的觀點(diǎn):矩形繞其一邊旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體,象這樣的旋轉(zhuǎn)體稱為圓柱。
2、定義:以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的的曲面所圍成的旋轉(zhuǎn)體叫做圓柱,旋轉(zhuǎn)軸叫圓柱的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面叫做圓柱的底面;平行于圓柱軸的邊旋轉(zhuǎn)而成的面叫圓柱的側(cè)面,圓柱的側(cè)面又稱圓柱的面。無(wú)論轉(zhuǎn)到什么位置,不垂直于軸的邊都叫圓柱側(cè)面的母線。
表示:圓柱用表示軸的字母表示。
規(guī)定:圓柱和棱柱統(tǒng)稱為柱體。
3、靜態(tài)觀點(diǎn):有一平面,其他的面是曲面;動(dòng)態(tài)的觀點(diǎn):直角三角形繞其一直角旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體,像這樣的旋轉(zhuǎn)體稱為圓錐。
4、定義:以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)而形成的面所圍成的旋轉(zhuǎn)體叫做圓錐。旋轉(zhuǎn)軸叫圓錐的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面成為圓錐的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫圓錐的側(cè)面,圓錐的側(cè)面又稱圓錐的面,無(wú)論旋轉(zhuǎn)到什么位置,這條邊都叫做圓錐側(cè)面的母線。
表示:圓錐用表示軸的字母表示。
規(guī)定:圓錐和棱錐統(tǒng)稱為錐體。
5、定義:以半直角梯形垂直于底邊的腰所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫圓臺(tái)。還可以看成用平行于圓錐底面的平面截這個(gè)圓錐,截面于底面之間的部分。旋轉(zhuǎn)軸叫圓臺(tái)的軸。垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而形成的圓面稱為圓臺(tái)的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫做圓臺(tái)的側(cè)面,無(wú)論轉(zhuǎn)到什么位置,這條邊都叫圓臺(tái)側(cè)面的母線。
表示:圓臺(tái)用表示軸的字母表示。
規(guī)定:圓臺(tái)和棱臺(tái)統(tǒng)稱為臺(tái)體。
6、定義:以半圓的直徑所在的直線為旋轉(zhuǎn)軸,將半圓旋轉(zhuǎn)一周所形成的曲面稱為球面,球面所圍成的旋轉(zhuǎn)體稱為球體,簡(jiǎn)稱為球。半圓的圓心稱為球心,連接球面上任意一點(diǎn)與球心的線段稱為球的半徑,連接球面上兩點(diǎn)并且過球心的線段稱為球的直徑。
表示:用表示球心的字母表示。
簡(jiǎn)單組合體的結(jié)構(gòu):
1、`由簡(jiǎn)單幾何體組合而成的幾何體叫簡(jiǎn)單組合體?,F(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。如教材圖1.1-11的前兩個(gè)圖形,他們是多面體與多面體的組合體;1.1-11的后兩個(gè)圖形,他們是由一個(gè)多面體從中截去一個(gè)或多個(gè)多面體得到的組合體。
2、常見的組合體有三種:多面體與多面體的組合;多面體與旋轉(zhuǎn)體的組合;旋轉(zhuǎn)體與旋轉(zhuǎn)體的組合。其基本形式實(shí)質(zhì)上有兩種:一種是由簡(jiǎn)單幾何體拼接而成的簡(jiǎn)單組合體;另一種是由簡(jiǎn)單簡(jiǎn)單幾何體截去或挖去一部分而成的簡(jiǎn)單組合體。
將本文的word文檔下載到電腦,方便收藏和打印。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十七
(2)導(dǎo)數(shù)的四則運(yùn)算。
(3)復(fù)合函數(shù)的導(dǎo)數(shù)。
設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即。
1、數(shù)列的極限:
粗略地說(shuō),就是當(dāng)數(shù)列的項(xiàng)n無(wú)限增大時(shí),數(shù)列的項(xiàng)無(wú)限趨向于a,這就是數(shù)列極限的描述性定義。記作:=a。如:
2、函數(shù)的極限:
1、在處的導(dǎo)數(shù)。
2、在的導(dǎo)數(shù)。
3、函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義:
函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,
即k=,相應(yīng)的切線方程是。
注:函數(shù)的導(dǎo)函數(shù)在時(shí)的函數(shù)值,就是在處的`導(dǎo)數(shù)。
例、若=2,則=()a—1b—2c1d。
(一)曲線的切線。
函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:
(1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)。
(2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為x。
數(shù)學(xué)家數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇十八
確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
2.生活中常見的函數(shù)優(yōu)化問題。
1)費(fèi)用、成本最省問題。
2)利潤(rùn)、收益最大問題。
3)面積、體積最(大)問題。
1.歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,破解的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,破解的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過兩類對(duì)象已知的相似特征得出所需要的相似特征。
2.類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。
對(duì)于含有參數(shù)的一元二次不等式解的討論。
1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。通過不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來(lái)。
拓展閱讀。
說(shuō)明:以下內(nèi)容為本文主關(guān)鍵詞的百科內(nèi)容,一詞可能多意,僅作為參考閱讀內(nèi)容,下載的文檔不包含此內(nèi)容。每個(gè)關(guān)鍵詞后面會(huì)隨機(jī)推薦一個(gè)搜索引擎工具,方便用戶從多個(gè)垂直領(lǐng)域了解更多與本文相似的內(nèi)容。
4、因式分解:把一個(gè)多項(xiàng)式在一個(gè)范圍(如實(shí)數(shù)范圍內(nèi)分解,即所有項(xiàng)均為實(shí)數(shù))化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。把一個(gè)多項(xiàng)式在一個(gè)范圍化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。因式分解是中學(xué)數(shù)學(xué)中最重要的恒等變形之一,它被廣泛地應(yīng)用于初等數(shù)學(xué)之中,在數(shù)學(xué)求根作圖、解一元二次方程方面也有很廣泛的應(yīng)用,是解決許多數(shù)學(xué)問題的有力工具。因式分解方法靈活,技巧性強(qiáng)。學(xué)習(xí)這些方法與技巧,不僅是掌握因式分解內(nèi)容所需的,而且對(duì)于培養(yǎng)解題技能、發(fā)展思維能力都有著十分獨(dú)特的作用。學(xué)習(xí)它,既可以復(fù)習(xí)整式的四則運(yùn)算,又為學(xué)習(xí)分式打好基礎(chǔ);學(xué)好它,既可以培養(yǎng)學(xué)生的觀察、思維發(fā)展性、運(yùn)算能力,又可以提高綜合分析和解決問題的能力?;窘Y(jié)論:分解因式為整式乘法的逆過程。高級(jí)結(jié)論:在高等代數(shù)上,因式分解有一些重要結(jié)論,在初等代數(shù)層面上證明很困難,但是理解很容易。