歡迎訪問考研秘籍考研網(wǎng)!    研究生招生信息網(wǎng)    考博真題下載    考研真題下載    全站文章索引
文章搜索
   
  高級搜索   

 您現(xiàn)在的位置: 考研秘籍考研網(wǎng) >> 文章中心 >> 專業(yè)課 >> 正文  2021年湖北師范大學(xué)《線性代數(shù)》碩士研究生入學(xué)考試大綱

新聞資訊
普通文章 上海市50家單位網(wǎng)上接受咨詢和報(bào)名
普通文章 北京大學(xué)生“就業(yè)之家”研究生專場招聘場面火爆
普通文章 廈大女研究生被殺案終審判決 兇手被判死刑
普通文章 廣東八校網(wǎng)上試點(diǎn)考研報(bào)名將開始
普通文章 2004年碩士北京招生單位報(bào)名點(diǎn)一覽
普通文章 洛陽高新區(qū)21名碩士研究生被聘為中層領(lǐng)導(dǎo)
普通文章 浙江省碩士研究生報(bào)名從下周一開始
普通文章 2004年上�?紖^(qū)網(wǎng)上報(bào)名時(shí)間安排表
普通文章 廣東:研究生入學(xué)考試2003年起重大調(diào)整
普通文章 2004年全國研招上�?紖^(qū)報(bào)名點(diǎn)一覽表
調(diào)劑信息
普通文章 寧夏大學(xué)04年碩士研究生調(diào)劑信息
普通文章 大連鐵道學(xué)院04年碩士接收調(diào)劑生源基本原則
普通文章 吉林大學(xué)建設(shè)工程學(xué)院04年研究生調(diào)劑信息
普通文章 溫州師范學(xué)院(溫州大學(xué)籌)05研究生調(diào)劑信息
普通文章 佳木斯大學(xué)04年考研調(diào)劑信息
普通文章 沈陽建筑工程學(xué)院04年研究生調(diào)劑信息
普通文章 天津師范大學(xué)政治與行政學(xué)院05年碩士調(diào)劑需求
普通文章 第二志愿考研調(diào)劑程序答疑
普通文章 上海大學(xué)04年研究生招收統(tǒng)考生調(diào)劑信息
普通文章 廣西大學(xué)04年碩士研究生調(diào)劑信息

友情提示:本站提供全國400多所高等院校招收碩士、博士研究生入學(xué)考試歷年考研真題、考博真題、答案,部分學(xué)校更新至2012年,2013年;均提供收費(fèi)下載。 下載流程: 考研真題 點(diǎn)擊“考研試卷””下載; 考博真題 點(diǎn)擊“考博試卷庫” 下載 

2021年全國碩士研究生入學(xué)考試

湖北師范大學(xué)自命題考試科目考試大綱

(科目名稱:線性代數(shù)      科目代碼:802)

一、考查目標(biāo)

《線性代數(shù)》考試是為招收學(xué)科教學(xué)(數(shù)學(xué))(教育專碩)專業(yè)碩士研究生而設(shè)置的業(yè)務(wù)水平考試。目的是測試考生對線性代數(shù)基礎(chǔ)知識的掌握程度和應(yīng)用相關(guān)知識解決問題的能力。要求考生理解線性代數(shù)的基本概念和基本理論,掌握線性代數(shù)的基本思想和方法,具有較強(qiáng)的邏輯推理能力、運(yùn)算能力和綜合運(yùn)用所學(xué)的知識分析問題和解決問題的能力。

二、考試形式與試卷結(jié)構(gòu)

(一)試卷成績及考試時(shí)間

本試卷滿分為150分,考試時(shí)間為180分鐘。

(二)答題方式

答題方式為閉卷、筆試。

(三)試卷題型,題量,結(jié)構(gòu)

選擇題: 5題,每小題3分,共15分;

填空題: 5題,每小題3分,共15分;

計(jì)算題與證明題: 6-8題,共120分。

(四)主要參考書目

同濟(jì)大學(xué)數(shù)學(xué)系編,《工程數(shù)學(xué):線性代數(shù)》(第六版),高教出版社,2014年版。

三、考查范圍

(一)行列式

考試內(nèi)容

    行列式的概念和基本性質(zhì)行列式按行(列)展開定理。

考試目標(biāo)

1.了解行列式的概念,掌握行列式的性質(zhì)。

2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計(jì)算行列式。

(二)矩陣

考試內(nèi)容

矩陣的概念;矩陣的線性運(yùn)算;矩陣的乘法;方陣的冪,方陣乘積的行列式;矩陣的轉(zhuǎn)置;伴隨矩陣矩陣;逆矩陣的概念和性質(zhì);矩陣可逆的充分必要條件;初等變換、初等矩陣;矩陣的秩;矩陣的等價(jià);分塊矩陣及其運(yùn)算。

考試目標(biāo)

1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質(zhì)。

2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。

3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。

4.理解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。

5.了解分塊矩陣及其運(yùn)算。

(三)向量

考試內(nèi)容

向量的概念;向量的線性組合與線性表示;向量組的線性相關(guān)與線性無關(guān);向量組的極大線性無關(guān)組;等價(jià)向量組向量組的秩;向量組的秩與矩陣的秩之間的關(guān)系;向量空間及其相關(guān)概念; 維向量空間的基變換和坐標(biāo)變換;過渡矩陣;向量的內(nèi)積;線性無關(guān)向量組的正交規(guī)范化方法;規(guī)范正交基、正交矩陣及其性質(zhì)。

考試目標(biāo)

1.理解維向量、向量的線性組合與線性表示的概念。

2.理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法。

3.理解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩。

4.理解向量組等價(jià)的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系。

5.了解維向量空間、子空間、基底、維數(shù)、坐標(biāo)等概念。

6.了解基變換和坐標(biāo)變換公式,會求過渡矩陣。

7.了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法。

8.了解規(guī)范正交基、正交矩陣的概念以及它們的性質(zhì)。

(四)線性方程組

考試內(nèi)容

線性方程組的克拉默(Cramer)法則;齊次線性方程組有非零解的充分必要條件;非齊次線性方程組有解的充分必要條件;線性方程組解的性質(zhì)和解的結(jié)構(gòu);齊次線性方程組的基礎(chǔ)解系和通解、解空間;非齊次線性方程組的通解。

考試目標(biāo)

l.會用克拉默法則求線性方程組。

2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。

3.理解齊次線性方程組的基礎(chǔ)解系、通解及解空間的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法。

4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。

5.掌握用初等行變換求解線性方程組的方法。

(五)矩陣的特征值和特征向量

考試內(nèi)容

矩陣的特征值和特征向量的概念、性質(zhì);相似變換、相似矩陣的概念及性質(zhì);矩陣可相似對角化的充分必要條件及相似對角矩陣;實(shí)對稱矩陣的特征值、特征向量及其相似對角矩陣。

考試目標(biāo)

1.理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣的特征值和特征向量。

2.理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。

3.掌握實(shí)對稱矩陣的特征值和特征向量的性質(zhì)。

(六)二次型

考試內(nèi)容

二次型及其矩陣表示;合同變換與合同矩陣;二次型的秩、慣性定理;二次型的標(biāo)準(zhǔn)形和規(guī)范形;用正交變換和配方法化二次型為標(biāo)準(zhǔn)形;二次型及其矩陣的正定性。

考試目標(biāo)

1.掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變換與合同矩陣的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形的概念以及慣性定理。

2.掌握用正交變換化二次型為標(biāo)準(zhǔn)形的方法,會用配方法化二次型為標(biāo)準(zhǔn)形。

3.理解正定二次型、正定矩陣的概念,并掌握其判別法。

 

 

免責(zé)聲明:本文系轉(zhuǎn)載自網(wǎng)絡(luò),如有侵犯,請聯(lián)系我們立即刪除,另:本文僅代表作者個(gè)人觀點(diǎn),與本網(wǎng)站無關(guān)。其原創(chuàng)性以及文中陳述文字和內(nèi)容未經(jīng)本站證實(shí),對本文以及其中全部或者部分內(nèi)容、文字的真實(shí)性、完整性、及時(shí)性本站不作任何保證或承諾,請讀者僅作參考,并請自行核實(shí)相關(guān)內(nèi)容。

  • 上一篇文章:

  • 下一篇文章:
  • 考博咨詢QQ 3455265070 點(diǎn)擊這里給我發(fā)消息 考研咨詢 QQ 3455265070 點(diǎn)擊這里給我發(fā)消息 郵箱: 3455265070@qq.com
    公司名稱:昆山創(chuàng)酷信息科技有限公司 版權(quán)所有
    考研秘籍網(wǎng) 版權(quán)所有 © kaoyanmiji.com All Rights Reserved
    聲明:本網(wǎng)站尊重并保護(hù)知識產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果我們轉(zhuǎn)載或引用的作品侵犯了您的權(quán)利,請通知我們,我們會及時(shí)刪除!